Journal of Analysis and Applications

Vol. 21 (2023), No.1, pp.25-36

ISSN: 0972-5954

© SAS International Publications

URL: www.sasip.net

Several properties of differential equation with (p,q)-Genocchi polynomials

J.Y. Kang

Abstract. We construct several differential equations of which are related to (p,q)-Genocchi polynomials in this paper. From these differential equation, we also investigate some relations which are related to Genocchi, q-Genocchi, and (p,q)-Genocchi polynomials.

AMS Subject Classification (2020): 05A19, 11B83, 34A30, 65L99

Keywords: (P,Q)-number, (p,q)-derivative, (p,q)-Genocchi polynomials, difference equation

1. Introduction

For any $n \in \mathbb{C}$, the (p,q)-number is defined by

$$[n]_{p,q} = \frac{p^n - q^n}{p - q}.$$

Wachs and White [9] introduced the (p,q)-numbers in mathematics literature in certain combinatorial problems without any connection to the quantum group related to mathematics and physics literature, see [4], [5], [9].

Definition 1.1 [1], [8]. Let z be any complex numbers with |z| < 1. The two forms of (p, q)-exponential functions are defined by

$$e_{p,q}(z) = \sum_{n=0}^{\infty} p^{\binom{n}{2}} \frac{z^n}{[n]_{p,q}!},$$

$$E_{p,q}(z) = \sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{z^n}{[n]_{p,q}!}.$$

In [2], Corcino made the theorem of (p,q)-extension of binomials coefficients and found various properties which are related to horizontal function, triangular function, and vertical function.

Definition 1.2 [2]. Let $n \geq k$. (p,q)-Gauss Binomial coefficients are defined by

$$\begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \frac{[n]_{p,q}!}{[n-k]_{p,q}![k]_{p,q}!},$$

where $[n]_{p,q}! = [n]_{p,q}[n-1]_{p,q} \cdots [1]_{p,q}$.

Definition 1.3 [1], [8]. (p,q)-derivative operator of any function f, also referred to as the Jackson derivative, is defined the as follows:

$$D_{p,q}f(x) = \frac{f(px) - f(qx)}{(p-q)x}, \quad x \neq 0,$$

and $D_{p,q}f(0) = f'(0)$.

26

Let p = 1 in Definition 1.3. Then, we can remark

$$D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \quad x \neq 0,$$

we call D_q is the q-derivative.

Theorem 1.4 [1], [6]. The operator, $D_{p,q}$, has the following basic properties:

(i) Derivative of a product

$$\begin{split} D_{p,q}(f(x)g(x)) &= f(px)D_{p,q}g(x) + g(qx)D_{p,q}f(x) \\ &= g(px)D_{p,q}f(x) + f(qx)D_{p,q}g(x). \end{split}$$

(ii) Derivative of a ratio

$$D_{p,q}\left(\frac{f(x)}{g(x)}\right) = \frac{g(qx)D_{p,q}f(x) - f(qx)D_{p,q}g(x)}{g(px)g(qx)} = \frac{g(px)D_{p,q}f(x) - f(px)D_{p,q}g(x)}{g(px)g(qx)}.$$

In 2016, Araci et al. [1] introduced a new class of Bernoulli, Euler and Genocchi polynomials based on the theory of (p,q)-numbers and found some properties and identities. After that, several studies have investigated the special functions for various applications, see [3], [6], [7].

Definition 1.5 [3], [10]. (p,q)-Euler numbers $\mathcal{E}_{n,p,q}$ and polynomials $\mathcal{E}_{n,p,q}(x)$ are defined by

$$\sum_{n=0}^{\infty} \mathcal{E}_{n,p,q} \frac{t^n}{[n]_{p,q}!} = \frac{2}{e_{p,q}(t) + 1},$$
$$\sum_{n=0}^{\infty} \mathcal{E}_{n,p,q}(x) \frac{t^n}{[n]_{p,q}!} = \frac{2}{e_{p,q}(t) + 1} e_{p,q}(tx).$$

Consider p = 1 in Definition 1.5. Then, we note

$$\sum_{n=0}^{\infty} \mathcal{E}_{n,q} \frac{t^n}{[n]_q!} = \frac{2}{e_q(t)+1},$$
$$\sum_{n=0}^{\infty} \mathcal{E}_{n,q}(x) \frac{t^n}{[n]_q!} = \frac{2}{e_q(t)+1} e_q(tx),$$

where $\mathcal{E}_{n,q}$ is the q-Euler number and $\mathcal{E}_{n,q}(x)$ is the q-Euler polynomials.

In Definition 1.5, we can note the Euler numbers and polynomials with condition $p=1,q\to 1$.

Definition 1.6 [3]. (p,q)-Genocchi numbers $G_{n,p,q}$ and polynomials $G_{n,p,q}(x)$ are defined by

$$\sum_{n=0}^{\infty} G_{n,p,q} \frac{t^n}{[n]_{p,q}!} = \frac{2t}{e_{p,q}(t)+1},$$
$$\sum_{n=0}^{\infty} G_{n,p,q}(x) \frac{t^n}{[n]_{p,q}!} = \frac{2t}{e_{p,q}(t)+1} e_{p,q}(tx).$$

Consider p = 1 in Definition 1.6, we note

$$\sum_{n=0}^{\infty} G_{n,q} \frac{t^n}{[n]_q!} = \frac{2t}{e_q(t)+1},$$
$$\sum_{n=0}^{\infty} G_{n,q}(x) \frac{t^n}{[n]_q!} = \frac{2t}{e_q(t)+1} e_q(tx),$$

where $G_{n,q}$ is the q-Genocchi numbers and $G_{n,q}(x)$ is the q-Genocchi polynomials. From Definition 1.6, we can note the Genocchi numbers and polynomials with condition $p = 1, q \to 1$.

2. Main results

In this section, we introduce several differential equations which is related to (p,q)-Genocchi polynomials. We also find some relations of Genocchi, q-Genocchi, and (p,q)-Genocchi polynomials using (p,q)-derivative.

Theorem 2.1. Let $[n]_{p,q} \neq 0$. Then, we obtain

$$D_{p,q,x}^{(k)}G_{n,p,q}(x) = \frac{p^{\binom{k}{2}}[n]_{p,q}!}{[n-k]_{p,q}!}G_{n-k,p,q}(p^kx).$$

Proof. From the generating function of (p,q)-Genocchi polynomials, we find

$$\sum_{n=0}^{\infty} G_{n,p,q}(x) \frac{t^n}{[n]_{p,q}!} = \sum_{n=0}^{\infty} G_{n,p,q} \frac{t^n}{[n]_{p,q}!} \sum_{n=0}^{\infty} p^{\binom{n}{2}} x^n \frac{t^n}{[n]_{p,q}!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} {n \brack k}_{p,q} p^{\binom{n-k}{2}} G_{k,p,q} x^{n-k} \right) \frac{t^n}{[n]_{p,q}!}. \tag{1}$$

From (1), we obtain a relation between (p,q)-Genocchi numbers and polynomials as follows.

$$G_{n,p,q}(x) = \sum_{k=0}^{n} {n \brack k}_{p,q} p^{\binom{n-k}{2}} G_{k,p,q} x^{n-k}$$
 (2)

Applying (p, q)-derivative in (2), we find

$$D_{p,q,x}G_{n,p,q}(x) = \sum_{k=0}^{n} {n \brack k}_{p,q} p^{\binom{n-k}{2}} G_{k,p,q} D_{p,q,x} x^{n-k}$$
$$= \sum_{k=1}^{n} {n \brack k}_{p,q} [n-k]_{p,q} p^{\binom{n-k-1}{2}} G_{k,p,q} (px)^{n-k-1}$$
(3)

From (3), we have

$$D_{p,q,x}^{(1)}G_{n,p,q}(x) = [n]_{p,q}G_{n-1,p,q}(px).$$

Again using the same method as above, we have

$$D_{p,q,x}^{(2)}G_{n,p,q}(x) = \frac{[n]_{p,q}!}{[n-2]_{p,q}!}G_{n-2,p,q}(p^2x).$$

We have the required result using mathematical induction.

From Theorem 2.1, We note

(i) Considering p = 1 one holds

$$G_{n-k,q}(x) = \frac{[n-k]_q!}{[n]_q!} D_{q,x}^{(k)} G_{n,q}(x),$$

where $D_q^{(n)}$ is q-derivative, $[n]_q$ is q-number, and $G_{n,q}(x)$ is the q-Genocchi polynomials.

(ii) Considering $p = 1, q \rightarrow 1$ one holds

$$G_{n-k}(x) = \frac{n!}{(n-k)!} \frac{d^k}{dx^k} G_n(x),$$

where $G_n(x)$ is the Genocchi polynomials.

Theorem 2.2. The (p,q)-Genocchi polynomials $G_{n,q}(x)$ satisfies the following differential equation:

$$\frac{1}{[n]_{p,q}!} D_{p,q,x}^{(n)} G_{n,p,q}(p^{-n}x) + \frac{1}{[n-1]_{p,q}!} D_{p,q,x}^{(n-1)} G_{n,p,q}(p^{-(n-1)}x)
+ \dots + \frac{1}{[3]_{p,q}!} D_{p,q,x}^{(3)} G_{n,p,q}(p^{-3}x) + \frac{1}{[2]_{p,q}!} D_{p,q,x}^{(2)} G_{n,p,q}(p^{-2}x)
+ D_{p,q,x}^{(1)} G_{n,p,q}(p^{-1}x) + 2G_{n,p,q}(x) - 2[n]_{p,q} p^{\binom{n-1}{2}} x^{n-1} = 0.$$

Proof. In order to find differential equation, we consider $e_{p,q}(t) \neq -1$. From the generating function of (p,q)-Genocchi polynomials, we have

$$\sum_{n=0}^{\infty} G_{n,p,q}(x) \frac{t^n}{[n]_{p,q}!} \left(\sum_{n=0}^{\infty} p^{\binom{n}{2}} \frac{t^n}{[n]_{p,q}!} + 1 \right)$$
$$= 2 \sum_{n=0}^{\infty} p^{\binom{n}{2}} x^n \frac{t^{n+1}}{[n]_{p,q}!}.$$

By using Cauchy product, we find

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} {n \brack k}_{p,q} p^{{k \choose 2}} G_{n-k,p,q}(x) + G_{n,p,q}(x) \right) \frac{t^n}{[n]_{p,q}!}$$

$$= 2 \sum_{n=0}^{\infty} [n]_{p,q} p^{{n-1 \choose 2}} x^{n-1} \frac{t^n}{[n]_{p,q}!}.$$

From the above equation, we have

$$\sum_{k=0}^{n} {n \brack k}_{p,q} p^{\binom{k}{2}} G_{n-k,p,q}(x) + G_{n,p,q}(x)$$

$$= 2[n]_{p,q} p^{\binom{n-1}{2}} x^{n-1}. \tag{4}$$

By using Theorem 2.1 in the left-side hand of (4), we find

$$\sum_{k=0}^{n} {n \brack k}_{p,q} p^{\binom{k}{2}} G_{n-k,p,q}(x) + G_{n,p,q}(x)$$

$$= \sum_{k=0}^{n} \frac{1}{[k]_{p,q}!} D_{p,q,x}^{(k)} G_{n,p,q}(p^{-k}x) + G_{n,p,q}(x).$$
(5)

From (4) and (5), we derive

$$\sum_{k=0}^{n} \frac{1}{[k]_{p,q}!} D_{p,q,x}^{(k)} G_{n,p,q}(p^{-k}x) + G_{n,p,q}(x) - 2[n]_{p,q} p^{\binom{n-1}{2}} x^{n-1} = 0.$$

From the above equation, we finish the proof of Theorem 2.2. \Box

Corollary 2.3. Putting p = 1 in Theorem 2.2, one holds

$$\frac{1}{[n]_{q}!} D_{q,x}^{(n)} G_{n,q}(x) + \frac{1}{[n-1]_{q}!} D_{q,x}^{(n-1)} G_{n,q}(x) + \cdots
+ \frac{1}{[3]_{q}!} D_{q,x}^{(3)} G_{n,q}(x) + \frac{1}{[2]_{q}!} D_{q,x}^{(2)} G_{n,q}(x) + D_{q,x}^{(1)} G_{n,q}(x) - 2[n]_{q} x^{n-1}
= 0,$$
(6)

where $D_q^{(n)}$ is the q-derivative and $G_{n,q}(x)$ is the q-Genocchi polynomials.

Corollary 2.4. Let $p = 1, q \rightarrow 1$ in Theorem 2.2. Then, one holds

$$\frac{1}{n!} \frac{d^n}{dx^n} G_n(x) + \frac{1}{(n-1)!} \frac{d^{n-1}}{dx^{n-1}} G_n(x) + \frac{1}{(n-2)!} \frac{d^{n-2}}{dx^{n-2}} G_n(x) + \cdots + \frac{1}{3!} \frac{d^3}{dx^3} G_n(x) + \frac{1}{2!} \frac{d^2}{dx^2} G_n(x) + \frac{d}{dx} G_n(x) - 2nx^{n-1} = 0,$$

where $G_n(x)$ is the Genocchi polynomials.

Theorem 2.5. The following differential equation:

$$\frac{G_{n,p,q} + G_{n,p,q}(1)}{p^{\binom{n}{2}}[n]_{p,q}!} D_{p,q,x}^{(n)} G_{n,p,q}(p^{-n}x)
+ \frac{G_{n-1,p,q} + G_{n-1,p,q}(1)}{p^{\binom{n-1}{2}}[n-1]_{p,q}!} D_{p,q,x}^{(n-1)} G_{n,p,q}(p^{-(n-1)}x) + \cdots
+ \frac{G_{2,p,q} + G_{2,p,q}(1)}{p[2]_{p,q}!} D_{p,q,x}^{(2)} G_{n,p,q}(p^{-2}x)
+ (G_{1,p,q} + G_{1,p,q}(1)) D_{p,q,x}^{(1)} G_{n,p,q}(p^{-1}x)
+ (G_{0,p,q} + G_{0,p,q}(1)) G_{n,p,q}(x) - 2[n]_{p,q} G_{n-1,p,q}(x) = 0,$$

has a (p,q)-Genocchi polynomials $G_{n,p,q}(x)$ as its solution.

Proof. From $G_{n,p,q}(x)$, we have a relation as

$$\begin{split} &\sum_{n=0}^{\infty} G_{n,p,q}(x) \frac{t^n}{[n]_{p,q}!} \\ &= \frac{1}{2t} \left(\frac{2t}{e_{p,q}(t)+1} + \frac{2t}{e_{p,q}(t)+1} e_{p,q}(t) \right) \frac{t}{e_{p,q}(t)-1} e_{p,q}(tx) \end{split}$$

$$=\frac{1}{2t}\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} {n\brack k}_{p,q}(G_{k,p,q}+G_{k,p,q}(1))G_{n-k,p,q}(x)\right)\frac{t^n}{[n]_{p,q}!}.$$

From the equation above, we derive the following equation:

$$2[n]_{p,q}G_{n-1,p,q}(x)$$

$$= \sum_{k=0}^{n} {n \brack k}_{p,q} (G_{k,p,q} + G_{k,p,q}(1)) G_{n-k,p,q}(x).$$

Therefore, we complete the proof of Theorem 2.5.

Corollary 2.6. Setting p = 1 in Theorem 2.5, the following holds

$$\frac{G_{n,q} + G_{n,q}(1)}{[n]_q!} D_{q,x}^{(n)} G_{n,q}(x) + \frac{G_{n-1,q} + G_{n-1,q}(1)}{[n-1]_q!} D_{q,x}^{(n-1)} G_{n,q}(x) + \cdots
+ \frac{G_{2,q} + G_{2,q}(1)}{[2]_q!} D_{q,x}^{(2)} G_{n,q}(x) + (G_{1,q} + G_{1,q}(1)) D_{q,x}^{(1)} G_{n,q}(x)
+ (G_{0,q} + G_{0,q}(1)) G_{n,q}(x) - 2[n]_q G_{n-1,q}(x) = 0,$$

where D_q is the q-derivative, $G_{n,q}$ is the q-Genocchi numbers, and $G_{n,q}(x)$ is the q-Genocchi polynomials.

Corollary 2.7. Considering $p = 1, q \rightarrow 1$ in Theorem 2.5, the following holds:

$$\frac{G_n + G_n(1)}{n!} \frac{d^n}{dx^n} G_n(x) + \frac{G_{n-1} + G_{n-1}(1)}{(n-1)!} \frac{d^{n-1}}{dx^{n-1}} G_n(x)$$

$$+ \dots + \frac{G_2 + G_2(1)}{2!} \frac{d^2}{dx^2} G_n(x)$$

$$+ (G_1 + G_1(1)) \frac{d}{dx} G_n(x) + (G_0 + G_0(1)) G_{n,q}(x) - 2nG_{n-1}(x) = 0,$$

where G_n is the Genocchi numbers and $G_n(x)$ is the Genocchi polynomials.

Theorem 2.8. The (p,q)-Genocchi polynomials $G_{n,p,q}(x)$ satisfies the following differential equation:

$$\frac{\mathcal{E}_{n,p,q} + \mathcal{E}_{n,p,q}(1)}{p^{\binom{n}{2}}[n]_{p,q}!} D_{p,q,x}^{(n)} G_{n,p,q}(p^{-n}x)$$

$$+ \frac{\mathcal{E}_{n-1,p,q} + \mathcal{E}_{n-1,p,q}(1)}{p^{\binom{n-1}{2}}[n-1]_{p,q}!} D_{p,q,x}^{(n-1)} G_{n,p,q}(p^{-(n-1)}x)$$

$$+ \dots + \frac{\mathcal{E}_{2,p,q} + \mathcal{E}_{2,p,q}(1)}{p[2]_{p,q}!} D_{p,q,x}^{(2)} G_{n,p,q}(p^{-2}x)$$

$$+ (\mathcal{E}_{1,p,q} + \mathcal{E}_{1,p,q}(1)) D_{p,q,x}^{(1)} G_{n,p,q}(p^{-1}x)$$

$$+ (\mathcal{E}_{0,p,q} + \mathcal{E}_{0,p,q}(1) - 2) G_{n,p,q}(x) = 0,$$

where $\mathcal{E}_{n,p,q}$ is the (p,q)-Euler numbers and $\mathcal{E}_{n,p,q}(x)$ is the (p,q)-Euler polynomials.

Proof. To find a differential equations with (p, q)-Euler numbers and polynomials as coefficients, we derive

$$\sum_{n=0}^{\infty} G_{n,p,q}(x) \frac{t^n}{[n]_{p,q}!} = \frac{2t}{e_{p,q}(t)+1} e_{p,q}(tx)$$

$$= \frac{1}{2} \left(\frac{2}{e_{p,q}(t)+1} + \frac{2}{e_{p,q}(t)+1} e_{p,q}(t) \right) \frac{t}{e_{p,q}(t)-1} e_{p,q}(tx)$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} {n \brack k}_{p,q} (\mathcal{E}_{k,p,q} + \mathcal{E}_{k,p,q}(1)) G_{n-k,p,q}(x) \right) \frac{t^n}{[n]_{p,q}!}.$$
 (7)

By using the coefficient comparison method in (7), we have

$$2G_{n,p,q}(x) = \sum_{k=0}^{n} {n \brack k}_{p,q} (\mathcal{E}_{k,p,q} + \mathcal{E}_{k,p,q}(1)) G_{n-k,p,q}(x).$$
 (8)

Applying
$$D_{p,q,x}^{(k)}G_{n,p,q}(p^{-k}x) = \frac{p^{\binom{k}{2}}[n]_{p,q}!}{[n-k]_{p,q}!}G_{n-k,p,q}(x)$$
 in (8), we find

$$\sum_{k=0}^{n} \frac{\mathcal{E}_{k,p,q} + \mathcal{E}_{k,p,q}(1)}{p^{\binom{k}{2}}[k]_{p,q}!} D_{p,q,x}^{(k)} G_{n,p,q}(p^{-k}x) - 2G_{n,p,q}(x) = 0.$$

From the above equation, we obtain the required result. \Box

Corollary 2.9. Setting p = 1 in Theorem 2.8, one holds

$$\frac{\mathcal{E}_{n,q} + \mathcal{E}_{n,q}(1)}{[n]_q!} D_{q,x}^{(n)} G_{n,q}(x)$$

$$+ \frac{\mathcal{E}_{n-1,q} + \mathcal{E}_{n-1,q}(1)}{[n-1]_q!} D_{q,x}^{(n-1)} G_{n,q}(x)$$

$$+ \dots + \frac{\mathcal{E}_{2,q} + \mathcal{E}_{2,q}(1)}{[2]_q!} D_{q,x}^{(2)} G_{n,q}(x) + (\mathcal{E}_{1,q} + \mathcal{E}_{1,q}(1)) D_{q,x}^{(1)} G_{n,q}(x)$$

$$+ (\mathcal{E}_{0,q} + \mathcal{E}_{0,q}(1) - 2) G_{n,q}(x) = 0,$$

where $D_q^{(n)}$ is the q-derivative, $\mathcal{E}_{n,q}$ is the q-Euler numbers, and $\mathcal{E}_{n,q}(x)$ is the q-Euler polynomials.

Corollary 2.10. *Setting* $p = 1, q \rightarrow 1$ *in Theorem 2.8, one holds*

$$\frac{\mathcal{E}_n + \mathcal{E}_n(1)}{n!} \frac{d^n}{dx^n} G_n(x) + \frac{\mathcal{E}_{n-1} + \mathcal{E}_{n-1}(1)}{(n-1)!} \frac{d^{n-1}}{dx^{n-1}} G_n(x) + \cdots
+ \frac{\mathcal{E}_2 + \mathcal{E}_2(1)}{2!} \frac{d^2}{dx^2} G_n(x) + (\mathcal{E}_1 + \mathcal{E}_1(1)) \frac{d}{dx} G_n(x)
+ (\mathcal{E}_0 + \mathcal{E}_0(1) - 2) G_n(x) = 0,$$

where \mathcal{E}_n is the Euler numbers and $\mathcal{E}_n(x)$ is the Euler polynomials.

3. Conclusion

We found some differential equation by using a relationship between (p,q)-Genocchi numbers and polynomials. We also obtained relationship between Genocchi, q-Genocchi, and (p,q)-Genocchi polynomials. Since Genocchi polynomials are useful in various fields, it is hoped that constructing degenerate q-Genocchi polynomials that cannot be found at present and finding their properties could be useful research.

Acknowledgement. The author would like to express his thanks to the anonymous referees for reading this paper and consequently their comments and suggestions.

References

 S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p,q)derivative operator and associated divided differences, J. Inequal and Appl., 301 (2016), 1-8.

- [2] R.B. Corcino, On (P,Q)-Binomial coefficients, Electron. J. Combin.
 Number Theory, 8 (2008), #A29, 1-16.
- [3] U. Duran, M. Acikgoz, S. Araci, $On\ (p,q)$ -Bernoulli, (p,q)-Euler and (p,q)-Genocchi Polynomials, J. Comp. and Theo. Nano., November 2016, 7833-7846.
- [4] R. Jagannathan, K. S. Rao, Two-parameter quantum algebras, twinbasic numbers, and associated generalized hypergeometric series, Proceeding of the International Conference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20-21 December 2005.
- [5] R. Jagannathan, (p,q)-Special functions, Special Functions and Differential Equations, Proceedings of a Workshop held at The Institute of Mathematical Sciences, Matras, India, January (1997), 13-24.
- [6] C. S. Ryoo, J. Y. Kang, Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials, Mathematics, 10 (2022), 1-16.
- [7] N. Saba and A. Boussayoud, New Theorem on Symmetric Functions and Their Applications on Some (p,q)-numbers, Journal of Applied Mathematics and Informatics, 40 (2022), 243-258.
- [8] P. N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, arXiv:1309.3934 [math.QA] (2013).
- [9] M. Wachs, D. White, (p,q)-Stirling numbers and set partition statistics, J. Conbin. Theory, A 56 (1991), 27-46.
- [9] C.H. Yu and J.Y. Kang, Properties of (p,q)-differential equations with (p,q)-Euler polynomials as solutions, J. Anal. Appl., 21 (2023), 1-12.

Department of Mathematics Education

Silla University

Busan, 46958

Republic of Korea

E-mail: jykang@silla.ac.kr

(Received: February, 2023; Revised: March, 2023)