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Abstract. We construct several differential equations of which are
related to (p, q)-Genocchi polynomials in this paper. From these
differential equation, we also investigate some relations which are
related to Genocchi, q-Genocchi, and (p, q)-Genocchi polynomials.
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1. Introduction

For any n ∈ C, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

Wachs and White [9] introduced the (p, q)-numbers in mathematics

literature in certain combinatorial problems without any connection to the

quantum group related to mathematics and physics literature, see [4], [5],

[9].

Definition 1.1 [1], [8]. Let z be any complex numbers with |z| < 1. The

two forms of (p, q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(n
2) zn

[n]p,q!
,
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Ep,q(z) =

∞∑
n=0

q(n
2) zn

[n]p,q!
.

In [2], Corcino made the theorem of (p, q)-extension of binomials coeffi-

cients and found various properties which are related to horizontal function,

triangular function, and vertical function.

Definition 1.2 [2]. Let n ≥ k. (p, q)-Gauss Binomial coefficients are

defined by [
n
k

]
p,q

=
[n]p,q!

[n− k]p,q![k]p,q!
,

where [n]p,q! = [n]p,q[n− 1]p,q · · · [1]p,q.

Definition 1.3 [1], [8]. (p, q)-derivative operator of any function f , also

referred to as the Jackson derivative, is defined the as follows:

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0,

and Dp,qf(0) = f ′(0).

Let p = 1 in Definition 1.3. Then, we can remark

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0,

we call Dq is the q-derivative.

Theorem 1.4 [1], [6]. The operator, Dp,q, has the following basic proper-

ties:

(i) Derivative of a product

Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x).
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(ii) Derivative of a ratio

Dp,q

(
f(x)

g(x)

)
=

g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

In 2016, Araci et al. [1] introduced a new class of Bernoulli, Euler

and Genocchi polynomials based on the theory of (p, q)-numbers and found

some properties and identities. After that, several studies have investigated

the special functions for various applications, see [3], [6], [7].

Definition 1.5 [3], [10]. (p, q)-Euler numbers En,p,q and polynomials

En,p,q(x) are defined by

∞∑
n=0

En,p,q
tn

[n]p,q!
=

2

ep,q(t) + 1
,

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

2

ep,q(t) + 1
ep,q(tx).

Consider p = 1 in Definition 1.5. Then, we note
∞∑

n=0

En,q
tn

[n]q!
=

2

eq(t) + 1
,

∞∑
n=0

En,q(x)
tn

[n]q!
=

2

eq(t) + 1
eq(tx),

where En,q is the q-Euler number and En,q(x) is the q-Euler polynomials.

In Definition 1.5, we can note the Euler numbers and polynomials

with condition p = 1, q → 1.

Definition 1.6 [3]. (p, q)-Genocchi numbers Gn,p,q and polynomials Gn,p,q(x)

are defined by
∞∑

n=0

Gn,p,q
tn

[n]p,q!
=

2t

ep,q(t) + 1
,

∞∑
n=0

Gn,p,q(x)
tn

[n]p,q!
=

2t

ep,q(t) + 1
ep,q(tx).
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Consider p = 1 in Definition 1.6, we note

∞∑
n=0

Gn,q
tn

[n]q!
=

2t

eq(t) + 1
,

∞∑
n=0

Gn,q(x)
tn

[n]q!
=

2t

eq(t) + 1
eq(tx),

where Gn,q is the q-Genocchi numbers and Gn,q(x) is the q-Genocchi poly-

nomials. From Definition 1.6, we can note the Genocchi numbers and poly-

nomials with condition p = 1, q → 1.

2. Main results

In this section, we introduce several differential equations which is re-

lated to (p, q)-Genocchi polynomials. We also find some relations of Genoc-

chi, q-Genocchi, and (p, q)-Genocchi polynomials using (p, q)-derivative.

Theorem 2.1. Let [n]p,q 6= 0. Then, we obtain

D(k)
p,q,xGn,p,q(x) =

p(k
2)[n]p,q!

[n− k]p,q!
Gn−k,p,q(pkx).

Proof. From the generating function of (p, q)-Genocchi polynomials, we

find

∞∑
n=0

Gn,p,q(x)
tn

[n]p,q!
=

∞∑
n=0

Gn,p,q
tn

[n]p,q!

∞∑
n=0

p(n
2)xn tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

p(n−k
2 )Gk,p,qx

n−k

)
tn

[n]p,q!
. (1)

From (1), we obtain a relation between (p, q)-Genocchi numbers and

polynomials as follows.

Gn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

p(n−k
2 )Gk,p,qx

n−k (2)

Applying (p, q)-derivative in (2), we find
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Dp,q,xGn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

p(n−k
2 )Gk,p,qDp,q,xx

n−k

=

n∑
k=1

[
n
k

]
p,q

[n− k]p,qp
(n−k−1

2 )Gk,p,q(px)n−k−1 (3)

From (3), we have

D(1)
p,q,xGn,p,q(x) = [n]p,qGn−1,p,q(px).

Again using the same method as above, we have

D(2)
p,q,xGn,p,q(x) =

[n]p,q!

[n− 2]p,q!
Gn−2,p,q(p2x).

We have the required result using mathematical induction.

From Theorem 2.1, We note

(i) Considering p = 1 one holds

Gn−k,q(x) =
[n− k]q!

[n]q!
D(k)

q,xGn,q(x),

where D
(n)
q is q-derivative, [n]q is q-number, and Gn,q(x) is the q-

Genocchi polynomials.

(ii) Considering p = 1, q → 1 one holds

Gn−k(x) =
n!

(n− k)!

dk

dxk
Gn(x),

where Gn(x) is the Genocchi polynomials.

Theorem 2.2. The (p, q)-Genocchi polynomials Gn,q(x) satisfies the fol-

lowing differential equation:

1

[n]p,q!
D(n)

p,q,xGn,p,q(p−nx) +
1

[n− 1]p,q!
D(n−1)

p,q,x Gn,p,q(p−(n−1)x)

+ · · ·+ 1

[3]p,q!
D(3)

p,q,xGn,p,q(p−3x) +
1

[2]p,q!
D(2)

p,q,xGn,p,q(p−2x)

+ D(1)
p,q,xGn,p,q(p−1x) + 2Gn,p,q(x)− 2[n]p,qp

(n−1
2 )xn−1 = 0.
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Proof. In order to find differential equation, we consider ep,q(t) 6= −1.

From the generating function of (p, q)-Genocchi polynomials, we have

∞∑
n=0

Gn,p,q(x)
tn

[n]p,q!

( ∞∑
n=0

p(n
2) tn

[n]p,q!
+ 1

)

= 2

∞∑
n=0

p(n
2)xn tn+1

[n]p,q!
.

By using Cauchy product, we find

∞∑
n=0

( ∞∑
k=0

[
n
k

]
p,q

p(k
2)Gn−k,p,q(x) + Gn,p,q(x)

)
tn

[n]p,q!

= 2

∞∑
n=0

[n]p,qp
(n−1

2 )xn−1 tn

[n]p,q!
.

From the above equation, we have

n∑
k=0

[
n
k

]
p,q

p(k
2)Gn−k,p,q(x) + Gn,p,q(x)

= 2[n]p,qp
(n−1

2 )xn−1. (4)

By using Theorem 2.1 in the left-side hand of (4), we find

n∑
k=0

[
n
k

]
p,q

p(k
2)Gn−k,p,q(x) + Gn,p,q(x)

=

n∑
k=0

1

[k]p,q!
D(k)

p,q,xGn,p,q(p−kx) + Gn,p,q(x). (5)

From (4) and (5), we derive

n∑
k=0

1

[k]p,q!
D(k)

p,q,xGn,p,q(p−kx)

+ Gn,p,q(x)− 2[n]p,qp
(n−1

2 )xn−1 = 0.

From the above equation, we finish the proof of Theorem 2.2.

Corollary 2.3. Putting p = 1 in Theorem 2.2, one holds
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1

[n]q!
D(n)

q,xGn,q(x) +
1

[n− 1]q!
D(n−1)

q,x Gn,q(x) + · · ·

+
1

[3]q!
D(3)

q,xGn,q(x) +
1

[2]q!
D(2)

q,xGn,q(x) + D(1)
q,xGn,q(x)− 2[n]qx

n−1

= 0, (6)

where D
(n)
q is the q-derivative and Gn,q(x) is the q-Genocchi polynomials.

Corollary 2.4. Let p = 1, q → 1 in Theorem 2.2. Then, one holds

1

n!

dn

dxn
Gn(x) +

1

(n− 1)!

dn−1

dxn−1Gn(x) +
1

(n− 2)!

dn−2

dxn−2Gn(x) + · · ·

+
1

3!

d3

dx3
Gn(x) +

1

2!

d2

dx2
Gn(x) +

d

dx
Gn(x)− 2nxn−1 = 0,

where Gn(x) is the Genocchi polynomials.

Theorem 2.5. The following differential equation:

Gn,p,q + Gn,p,q(1)

p(n
2)[n]p,q!

D(n)
p,q,xGn,p,q(p−nx)

+
Gn−1,p,q + Gn−1,p,q(1)

p(n−1
2 )[n− 1]p,q!

D(n−1)
p,q,x Gn,p,q(p−(n−1)x) + · · ·

+
G2,p,q + G2,p,q(1)

p[2]p,q!
D(2)

p,q,xGn,p,q(p−2x)

+ (G1,p,q + G1,p,q(1))D(1)
p,q,xGn,p,q(p−1x)

+ (G0,p,q + G0,p,q(1))Gn,p,q(x)− 2[n]p,qGn−1,p,q(x) = 0,

has a (p, q)-Genocchi polynomials Gn,p,q(x) as its solution.

Proof. From Gn,p,q(x), we have a relation as

∞∑
n=0

Gn,p,q(x)
tn

[n]p,q!

=
1

2t

(
2t

ep,q(t) + 1
+

2t

ep,q(t) + 1
ep,q(t)

)
t

ep,q(t)− 1
ep,q(tx)
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=
1

2t

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(Gk,p,q + Gk,p,q(1))Gn−k,p,q(x)

)
tn

[n]p,q!
.

From the equation above, we derive the following equation:

2[n]p,qGn−1,p,q(x)

=

n∑
k=0

[
n
k

]
p,q

(Gk,p,q + Gk,p,q(1))Gn−k,p,q(x).

Therefore, we complete the proof of Theorem 2.5.

Corollary 2.6. Setting p = 1 in Theorem 2.5, the following holds

Gn,q + Gn,q(1)

[n]q!
D(n)

q,xGn,q(x) +
Gn−1,q + Gn−1,q(1)

[n− 1]q!
D(n−1)

q,x Gn,q(x) + · · ·

+
G2,q + G2,q(1)

[2]q!
D(2)

q,xGn,q(x) + (G1,q + G1,q(1))D(1)
q,xGn,q(x)

+ (G0,q + G0,q(1))Gn,q(x)− 2[n]qGn−1,q(x) = 0,

where Dq is the q-derivative, Gn,q is the q-Genocchi numbers, and

Gn,q(x) is the q-Genocchi polynomials.

Corollary 2.7. Considering p = 1, q → 1 in Theorem 2.5, the following

holds:

Gn + Gn(1)

n!

dn

dxn
Gn(x) +

Gn−1 + Gn−1(1)

(n− 1)!

dn−1

dxn−1Gn(x)

+ · · ·+ G2 + G2(1)

2!

d2

dx2
Gn(x)

+ (G1 + G1(1))
d

dx
Gn(x) + (G0 + G0(1))Gn,q(x)− 2nGn−1(x) = 0,

where Gn is the Genocchi numbers and Gn(x) is the Genocchi polynomials.

Theorem 2.8. The (p, q)-Genocchi polynomials Gn,p,q(x) satisfies the fol-

lowing differential equation:

En,p,q + En,p,q(1)

p(n
2)[n]p,q!

D(n)
p,q,xGn,p,q(p−nx)
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+
En−1,p,q + En−1,p,q(1)

p(n−1
2 )[n− 1]p,q!

D(n−1)
p,q,x Gn,p,q(p−(n−1)x)

+ · · ·+ E2,p,q + E2,p,q(1)

p[2]p,q!
D(2)

p,q,xGn,p,q(p−2x)

+ (E1,p,q + E1,p,q(1))D(1)
p,q,xGn,p,q(p−1x)

+ (E0,p,q + E0,p,q(1)− 2)Gn,p,q(x) = 0,

where En,p,q is the (p, q)-Euler numbers and En,p,q(x) is the (p, q)-Euler

polynomials.

Proof. To find a differential equations with (p, q)-Euler numbers and poly-

nomials as coefficients, we derive

∞∑
n=0

Gn,p,q(x)
tn

[n]p,q!
=

2t

ep,q(t) + 1
ep,q(tx)

=
1

2

(
2

ep,q(t) + 1
+

2

ep,q(t) + 1
ep,q(t)

)
t

ep,q(t)− 1
ep,q(tx)

=
1

2

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(Ek,p,q + Ek,p,q(1))Gn−k,p,q(x)

)
tn

[n]p,q!
. (7)

By using the coefficient comparison method in (7), we have

2Gn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

(Ek,p,q + Ek,p,q(1))Gn−k,p,q(x). (8)

Applying D
(k)
p,q,xGn,p,q(p−kx) =

p(
k
2)[n]p,q !

[n−k]p,q ! Gn−k,p,q(x) in (8), we find

n∑
k=0

Ek,p,q + Ek,p,q(1)

p(k
2)[k]p,q!

D(k)
p,q,xGn,p,q(p−kx)− 2Gn,p,q(x) = 0.

From the above equation, we obtain the required result.

Corollary 2.9. Setting p = 1 in Theorem 2.8, one holds

En,q + En,q(1)

[n]q!
D(n)

q,xGn,q(x)
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+
En−1,q + En−1,q(1)

[n− 1]q!
D(n−1)

q,x Gn,q(x)

+ · · ·+ E2,q + E2,q(1)

[2]q!
D(2)

q,xGn,q(x) + (E1,q + E1,q(1))D(1)
q,xGn,q(x)

+ (E0,q + E0,q(1)− 2)Gn,q(x) = 0,

where D
(n)
q is the q-derivative, En,q is the q-Euler numbers, and En,q(x) is

the q-Euler polynomials.

Corollary 2.10. Setting p = 1, q → 1 in Theorem 2.8, one holds

En + En(1)

n!

dn

dxn
Gn(x) +

En−1 + En−1(1)

(n− 1)!

dn−1

dxn−1Gn(x) + · · ·

+
E2 + E2(1)

2!

d2

dx2
Gn(x) + (E1 + E1(1))

d

dx
Gn(x)

+ (E0 + E0(1)− 2)Gn(x) = 0,

where En is the Euler numbers and En(x) is the Euler polynomials.

3. Conclusion

We found some differential equation by using a relationship between

(p, q)-Genocchi numbers and polynomials. We also obtained relationship

between Genocchi, q-Genocchi, and (p, q)-Genocchi polynomials. Since

Genocchi polynomials are useful in various fields, it is hoped that construct-

ing degenerate q-Genocchi polynomials that cannot be found at present and

finding their properties could be useful research.
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